Why is ultrapure water corrosive?

Ultrapure water is considered corrosive due to its extreme purity and lack of dissolved ions. Here’s why:

1. Ion Deficiency and Aggressiveness:

  • Deionization: Ultrapure water has been stripped of nearly all its dissolved ions and impurities, making it highly ion-deficient. This creates a strong chemical potential to absorb ions from any material it comes into contact with.
  • Aggressiveness: Because it lacks ions, ultrapure water is “hungry” for them. It will readily dissolve and absorb ions from surfaces, such as metals, plastics, and even glass, in an attempt to reach a more stable chemical state.

2. High Resistivity:

  • Electrical Properties: Ultrapure water has very high electrical resistivity (around 18.2 megohm-cm at 25°C). This means it does not conduct electricity well due to the absence of free ions. Materials that would normally resist corrosion in regular water can become vulnerable when exposed to ultrapure water because the water can more easily pull ions from the material.

3. Surface Reactions:

  • Surface Leaching: When ultrapure water comes into contact with a material, it can leach ions and molecules from the surface, leading to corrosion or degradation. For example, in metals, this can lead to pitting or general corrosion, and in plastics, it can lead to the leaching of additives or plasticizers.

4. Impact on Protective Layers:

  • Oxide Layers: Some metals, like stainless steel, rely on a thin oxide layer for corrosion resistance. Ultrapure water can dissolve or disrupt this protective layer, making the underlying metal more susceptible to corrosion.

5. Non-Buffering Nature:

  • Lack of Buffering Capacity: Ultrapure water has no buffering capacity, meaning it can easily become acidic or basic if exposed to contaminants or air. This shift in pH can further enhance its corrosive properties.

Conclusion:

Ultrapure water’s corrosive nature is not due to any chemical aggressiveness like that of acids or bases, but rather its extreme purity and strong tendency to equilibrate by absorbing ions and impurities from the materials it contacts. This makes it particularly challenging to handle and store without contamination or material degradation.